
Implementing
parallel
algorithms for
data analysis in
ROOT/RooFit
Sverre Jarp, Alfio Lazzaro, Julien Leduc,
Yngve Sneen Lindal, Andrzej Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute,

Edinburgh (UK)
June 15th−17th, 2011

CERN openlab
q  CERN openlab is the only large-

scale structure at CERN for
developing industrial R&D
partnerships
§  www.cern.ch/openlab-about

q  Divided in competence centers
§ HP: wireless networking
§  Intel: advanced hardware and

software evaluations and
integrations

§ Oracle: database and storage
§  Siemens: automating control

systems

2 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Introduction (1)
q Part of our activity is to develop new benchmarks

that are representative of the computing applications
used at CERN
§  Simulation, reconstruction, data analysis
§  Collaboration with the physics community
§ We use these applications for evaluating the performance

of new Intel platforms, working closing with Intel experts
q  In this and in next presentation we will present what

we are doing for data analysis applications
§ Biased from my experience in the Babar and Atlas

experiments. However, data analysis is not our goal, so
we don’t focus on any specific analysis

• Strong collaboration with physics collaborators to have wide
coverage of different analyses

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Introduction (2)

q  Our way to proceed:
§  Understanding the current version of the algorithm
§  Rewriting the algorithm so that we can improve it

• Optimizations, vectorization, numerical accuracy

§  Apply parallelization
§  Porting the algorithm on accelerators

q  We will focus on the problem we have encountered and
on the solutions we have adopted, rather than showing
results
§  Most technical details, useful in the context of a workshop
§  In my presentation I will introduce the application and the

parallelization on the CPU, while in the next presentation Yngve will
show the porting to the GPU

4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Data analysis

q Huge quantity of data collected, but most of events
are due to well-know physics processes
§ New physics effects expected in a tiny fraction of the total

events: few tens
q Crucial to have a good discrimination between

interesting (signal) events and the rest (background)
§ Data analysis techniques play a crucial role in this “war”

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Likelihood-based techniques

q  Data are a collection of independent events
§  an event consists of the measurement of a set of variables

(energies, masses, spatial and angular variables...) recorded in a
brief span of time by the physics detectors

q  Introducing the concept of probability P (= Probability
Density Function, PDF) for a given event to be signal or
background, we can combine this information for all
events in the likelihood function

q  Several data analysis techniques requires the evaluation
of L to discriminate signal versus background events

6 Alfio Lazzaro (alfio.lazzaro@cern.ch)

L =
N�

i=1

P(x̂i|θ̂) N number of events
x̂i set of variables for the event i
θ̂ set of parameters

Maximum Likelihood Fits

q  It allows to estimate free parameters over a data sample,
by minimizing the corresponding Negative Log-Likelihood
(NLL) function (extended likelihood)

q  The procedure of minimization can require several

evaluation of the NLL
§  Depending on the complexity of the function, the number of

observables, the number of free parameters, and the number of
events, the entire procedure can require long execution time

§  Mandatory to speed-up the execution

7 Alfio Lazzaro (alfio.lazzaro@cern.ch)

NLL =
s�

j=1

nj −
N�

i=1

ln
s�

j=1

njPj(x̂i|θ̂j)

s species, i.e. signals and backgrounds
nj number of events belonging to the species j

Examples

q  In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

8 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Pj(x̂i|θ̂j) =
n�

v=1

Pv
j (x

v
i |θ̂j)

Gaussian
G(x|µ,σ)

Kyle Cranmer (NYU)

Center for
Cosmology and
Particle Physics

CERN Academic Training, Statistics, April 2011

Parametric PDFs

8

G(x|µ, σ) (µ, σ)

G

x mu sigma

Many familiar PDFs are considered parametric
‣ eg. a Gaussian is parametrized by
‣ defines a family of distributions
‣ allows one to make inference about parameters

I will represent PDFs graphically as below (directed acyclic graph)
‣ every node is a real-valued function of the nodes below

Examples

q  In most cases PDFs can be factorized as product of the n
PDFs of each variable (i.e. case of uncorrelated variables)

9 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Pj(x̂i|θ̂j) =
n�

v=1

Pv
j (x

v
i |θ̂j)

Combined Atlas & CMS Higgs analysis:
12 variables
50 free parameters

Building models: RooFit
q  RooFit is commonly used in High Energy Physics

experiments to define the likelihood functions (W. Verkerke
and D. Kirkby)
q  Details at http://root.cern.ch/drupal/content/roofit
q  Mathematical concepts are represented as C++ objects

q  On top of RooFit developed another package for advanced
data analysis techniques, RooStats
q  Limits and intervals on Higgs mass and New Physics effects

10 Alfio Lazzaro (alfio.lazzaro@cern.ch)

MINUIT
q  Numerical minimization of the NLL using MINUIT (F. James,

Minuit, Function Minimization and Error Analysis, CERN long
write-up D506, 1970)

q  MINUIT uses the gradient of the function to find local minimum
(MIGRAD), requiring
q  The calculation of the gradient of the function for each free parameter,

naively

q  The calculation of the covariance matrix of the free parameters, i.e.
evaluation of the second order derivatives

q  The minimization is done in several steps moving in the
Newton direction: each step requires the calculation of the
gradient
➪ Several calls to the NLL

2 function calls
per each

parameter	

11 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Caveats

q  We developed a new algorithm for the likelihood function
evaluation to be added in RooFit
§  We don’t replace the current RooFit algorithm, which is used for

results checking
§  Very chaotic situation: users can implement any kind of model
§  No need to change the user code to use the new implementation,

i.e. same interface (use a simple flag to switch to the new
algorithm)

q  The new algorithm is optimized to run on the CPU
§  Used as reference for the GPU implementation: “fair” comparison

q  All data in the calculation are in double precision floating
point numbers

q  Our target is to use commodity systems (e.g. laptops or
desktops), easily accessible to data analysts
§  Of course we tests also on server systems

12 Alfio Lazzaro (alfio.lazzaro@cern.ch)

1.  Read the values of the variables for each event
2.  Make the calculation of PDFs for each event

q  Each PDF has a common interface declared inside the class RooAbsPdf
with a virtual method which defines the function

q  Automatic calculation of the normalization integrals for each PDF
q  Calculation of composite PDFs: sums, products, extendend PDFs

3.  Loop on all events and make the calculation of the NLL
§  A single loop for all events

Parallel execution
over the events
(by fork), with final
reduction of the
contributions

Likelihood Function evaluation in RooFit (1)

var1 var2 … varn

1
2
…
N

Variables	

Ev

en
ts
	

13 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Ex: P = PA(ai) PB(bi)

Likelihood Function evaluation in RooFit (2)	

a1 b1

a2 b2

14 Alfio Lazzaro (alfio.lazzaro@cern.ch)

NLL = 0

Ex: P = PA(ai) PB(bi)

Likelihood Function evaluation in RooFit (2)	

a1 b1

a2 b2

PA (a1) PB(b1) PA (a1) PB(b1) NLL −= ln [PA(a1) PB(b1)]

15 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Ex: P = PA(ai) PB(bi)

Likelihood Function evaluation in RooFit (2)	

a1 b1

a2 b2 PA (a2) PB(b2) PA (a2) PB(b2) NLL −= ln [PA(a2) PB(b2)]

16 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Looping over all events and do the accumulation on NLL
§  Data are stored in something like ROOT TTree (RooTreeDataStore)

•  Very inefficient. At then our variables are simple float/double/int values
•  It breaks any possible vectorization
•  No thread safe, parallelization done with a fork, i.e. no shared memory

§  In the C++ OO spirit, there is a common interface (RooAbsReal)
and then virtual methods in all derivate classes
•  Each PDF calls virtual methods to access parameters, the observables, the

integral value for the normalization, calculation of the ln’s, …
•  In case of composite PDFs (e.g. sums, products) it requires the call to virtual

method of corresponding PDFs
•  A lot of virtual function calls!

§  If the PDF doesn’t change in the minimization, they are
precalculated for all events and stored as a standard variable in
the dataset
•  Not efficient way for caching the values of the PDFs
•  It doesn’t take in account caching of constant values of the PDF inside a

single minimization iteration

Likelihood Function evaluation in RooFit (3)	

17 Alfio Lazzaro (alfio.lazzaro@cern.ch)

§  PDFs are considered as independent entities, i.e. a PDFs
doesn’t know if it is called inside a minimization process,
from a mother composite PDF, or with a direct call
•  A PDF is not responsible to read the corresponding data
•  The PDF provides a single result for a given values of the data

and parameters
•  In case of calculation which gives errors (e.g. negative

probability), we get a warning message for the given values of the
data and parameters

§  Parallelization with a fork increases the memory footprint
with the number of threads, but data are read-only!
•  Still it is easy to implement and it gives good scalability

§  At the end, we are doing the evaluation of functions
(PDFs) over a vector of read-only data!
•  Suitable for loop parallelism (note functions can be very complex!)

Likelihood Function evaluation in RooFit (4)	

18 Alfio Lazzaro (alfio.lazzaro@cern.ch)

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

19 Alfio Lazzaro (alfio.lazzaro@cern.ch)

a1 b1

a2 b2

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

a1 b1

a2 b2

PA (a1)

PA (a2)

20 Alfio Lazzaro (alfio.lazzaro@cern.ch)

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

a1 b1

a2 b2

PA (a1)

PA (a2)

21 Alfio Lazzaro (alfio.lazzaro@cern.ch)

PB (b1)

PB (b2)

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

a1 b1

a2 b2

PA (a1)

PA (a2)

22 Alfio Lazzaro (alfio.lazzaro@cern.ch)

PB (b1)

PB (b2)

PA (a1)PB (b1)

PA (a2)PB (b2)

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

a1 b1

a2 b2

PA (a1)

PA (a2)

23 Alfio Lazzaro (alfio.lazzaro@cern.ch)

PB (b1)

PB (b2)

PA (a1)PB (b1)

PA (a2)PB (b2)

ln [PA(a1) PB (b1)]
ln [PA(a2) PB (b2)]

New algorithm and parallelization (1)	

1.  Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

q  Corresponding array of results is produced for each PDF
q  Evaluation of the function inside the local PDF

3.  Combine the arrays of results (composite PDFs)
4.  Loop over the final array of results to calculate NLL (final reduction)
	

Ex: P = PA(ai) PB(bi)	

	

	

	

a1 b1

a2 b2

PA (a1)

PA (a2)

24 Alfio Lazzaro (alfio.lazzaro@cern.ch)

PB (b1)

PB (b2)

PA (a1)PB (b1)

PA (a2)PB (b2)

ln [PA(a1) PB (b1)]
ln [PA(a2) PB (b2)]

Final reduction in NLL

New algorithm and parallelization (2)	

•  Parallelization splitting calculation of each PDF over the events
(data parallelism) and over the independent PDFs (task parallelism)	

•  Data are organized in vector, which are shared in memory	

•  Perfect for vectorization	

•  Call the PDFs once for all events	

•  Reduce dramatically the number of virtual function calls!	

•  Perfect for caching values over the iterations during the minimization	

•  Drawbacks 	

•  Require to handle arrays of temporary results: 1 value per each event

and PDF	

•  Memory footprint increases with the number of events and number

of PDFs, but not with the number of threads!	

•  Due to the vectorization, we cannot have warning messages for a

given event, but only at the end of the loop for the calculation over
all events	

25 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Implementation in RooFit

q  First of all we added a new class to manage the data as
vectors (based on map of std::vector’s, where the key is
the name of the observable)

q  We added a class to take in account the array of results
(based on std::vector)

q  The loop parallelism is implemented using OpenMP
§  An OpenMP pragma loop for each loop used in the evaluation of the

function
q  Added new methods to the PDF interface

§  Still the old interface is working
q  Using Intel compiler for the auto-vectorization of the loops

(using svml library by Intel)
§  GNU compiler cannot auto-vectorize complex functions (like exp’s),

unless you use intrinsics…
26 Alfio Lazzaro (alfio.lazzaro@cern.ch)

OpenMP parallelization

q  Very easy parallelization with
OpenMP	

q  Take benefit from the code
optimizations 	

q  Inlining of the functions, no

virtual functions	

q  Data organized in C arrays,

perfect for vectorization	

q  Easily avoid race conditions,

keep the parallel region
limited inside each PDF	

27 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallel reduction

q  The final reduction for the NLL evaluation done in parallel using
block-wise algorithm
§  Numerical approximation w.r.t. sequential reduction, which are

number of threads dependent
§  Minuit is very sensitive to these approximation

• Of course differences are negligible, but still they can worry people (and they
can be non deterministic)

q  We implemented a parallel reduction based on double-double
algorithm which reduces the approximations (Y. He and C. H. Q.
Ding, The Journal of Supercomputing, 18, 259–277, 2001; P.
Kornerup at al., IEEE Transactions on Computers, 01 Feb. 2011)
§  We need to switch off any compiler optimization inside the

reduction, using pragmas
q  Now the results are identical up to 10-6, no matter how many

threads you are running

28 Alfio Lazzaro (alfio.lazzaro@cern.ch)

 Complex Model Test

17 PDFs in total, 3 variables, 4 components, 35 parameters
§  G: Gaussian
§  AG: Asymmetric Gaussian
§  BW: Breit-Wigner
§  AR: Argus function
§  P: Polynomial

Note: all PDFs have analytical normalization integral, i.e. >98%
of the sequential portion can be parallelized

na[f1,aG1,a(x) + (1− f1,a)G2,a(x)]AG1,a(y)AG2,a(z)+

nbG1,b(x)BW1,b(y)G2,b(z)+

ncAR1,c(x)P1,c(y)P2,c(z)+

ndP1,d(x)G1,d(y)AG1,d(z)

Alfio Lazzaro (alfio.lazzaro@cern.ch)

40% of the
execution time
is spent in exp’s

calculation	

29

Model from B. Aubert et. al., 	

Phys. Rev. Lett. 98, 031801, 2007	

Test on CPU in sequential

q  Dual socket Intel Westmere-based system: CPU (L5640) @
2.27GHz (12 physical cores, 24 hardware threads in total),
10x4096MB DDR3 memory @ 1333MHz

q  Linux 64bit, Intel C++ compiler version 12.0.2

30

Table 1. Results of the comparison executing the fit on different number of events for the

three cases: original RooFit, OpenMP with one thread without vectorization, OpenMP with

one thread with vectorization. The time per evaluation is obtained dividing the wall-clock time

by the number of NLL evaluations required for the minimization, which is used in the RooFit

versus OpenMP comparison.

Events 10,000 25,000 50,000 100,000

RooFit

NLL evaluations 15810 14540 19041 12834

Time (s) 826.0 1889.0 5192.9 6778.9

Time per NLL evaluation (ms) 52.25 129.92 272.72 528.19

OpenMP (w/o vectorization)

NLL evaluations 15237 17671 15761 11396

Time (s) 315.1 916.0 1642.6 2397.3

Time per NLL evaluation (ms) 20.68 51.84 104.22 210.36

w.r.t. RooFit 2.5x 2.5x 2.6x 2.5x

OpenMP (w/ vectorization)

NLL evaluations 15304 17163 15331 12665

Time (s) 178.8 492.1 924.2 1536.9

Time per NLL evaluation (ms) 11.68 28.67 60.28 121.35

w.r.t. RooFit 4.5x 4.5x 4.4x 4.4x

include the time spent for the copy of the events from host memory to the device memory and

for the copy of the array of final results back to the host memory. From the hardware point of

view, we are comparing two systems which can be considered commodity systems: a single GPU,

whose main target is for computer gaming, versus a standard single socket desktop system with

4 cores. The results are shown in figure 2. We can see how the CUDA implementation behaves

better for high number of events, which is due to the specific ability of the GPU architectures

to take advantage of multiple threads.

5. Conclusion

In this paper we have described a different algorithm for the NLL evaluation in maximum

likelihood fits with respect to the algorithm used in the RooFit package. We implemented

this algorithm to run in parallel on CPU, using OpenMP, and GPU, using CUDA. In our

test the OpenMP implementation with a single thread is about 4.5x faster than the RooFit

implementation (table 1). Furthermore the OpenMP algorithm was executed in parallel, giving

a speed-up of about 10x with respect to a single thread execution in our test on 12 cores

(24 hardware threads) system (figure 1). The comparison between the OpenMP and CUDA

implementations are made using commodity systems, that can be considered, in terms of price

and power consumption, easily accessible to general data analysts. In this case, running the

OpenMP implementation in parallel (with 4 threads), we were able to reach a boost of 2.8x with

the CUDA implementation (figure 2).

References

[1] Cowan G 1998 Statistical Data Analysis (Oxford: Clarendon Press)

[2] Davidon W C 1991 SIAM J. Optim. 1 1–17

4.5x faster!	

Vectorization
gives a 1.8x
speed-up

(SSE).	

Additional
12% using

AVX on Intel
Sandy Bridge	

Test on CPU in parallel
q  Dual socket Intel Westmere-based system: CPU @ 2.67GHz (12

physical cores, 24 hardware threads in total), Turbo Mode ON,
10x4096MB DDR3 memory @ 1333MHz

q  Linux 64bit, Intel C++ compiler version 12.0.2
q  100,000 events
q  Data is shared, i.e. no

 significant increase in the
 memory footprint
§  Possibility to use Hyper-threading

 (about 20% improvement)

q  Limited by the sequential part,
 OpenMP overhead, and
 memory access to data

31 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Improvements
•  Scalability is limited by accessing the array of results

•  In particular the effect becomes important for PDFs with simple
function, like polynomials and composite PDFs (add and prod)

•  We do pinning of the threads to the physical cores, taking in
account the NUMA effect

•  However the performance depends on the cache memory
available on the systems
•  Testing on a 4 core i7 desktop system (8 MB L3 cache) we

reach a factor ~2x with 8 threads (using SMT)
•  We solve this problem with different techniques

•  Merge the number of OpenMP parallel region and reuse the data
(in particular for composite PDFs)

•  Do block-splitting, i.e. do full evaluation for small sub-groups of
events

•  Doing this optimization we are able to reach 4.6x on the 4 core i7
desktop system (8 threads with SMT)

32 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Conclusion (1)

•  Implementation of the algorithm in OpenMP required not so
drastic changes in the existing RooFit code	

•  In any case we added our implementation, so that users

can use the original implementation for reference	

•  Optimization gives a great speed-up: ~5x	

•  Note that our target is running at the user-level of small

systems (laptops, desktops), i.e. with small number of
CPU cores

•  Very important to take under control numerical accuracy
•  We would like to try single precision in case of PDF

evaluation, moving to double precision for the final
reduction

•  Reduce memory footprint (half space for results)
•  Gain a factor possible 2x from vectorization

33 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Conclusion (2)
•  Try the code on LHC analyses	

•  Dalitz analysis	

•  Working with RooStats authors	

•  We are also evaluating Intel MIC platform, which looks very
promising as accelerator system (very easy to use it)
•  x86 instruction set accelerator
•  512-bit SIMD units
•  More than >50 cores

•  There will a workshop at CERN discussing “Future Challenges in
Tracking and Trigger Concepts”: http://indico.cern.ch/event/
tracking2011

34 Alfio Lazzaro (alfio.lazzaro@cern.ch)

